RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility.
نویسندگان
چکیده
AIMS The factors responsible for cardiomyopathy are not fully understood. Our studies of the transcriptome of human embryonic stem cell-derived cardiomyocytes identified novel genes up-regulated during cardiac differentiation, including RBM24. We therefore studied how its deficiency affected heart development. METHODS AND RESULTS The expression of Rbm24 was detected in mouse cardiomyocytes and embryonic myocardium of zebrafish at the RNA and protein level. The Rbm24 loss-of-function showed that Rbm24 deficiency resulted in a reduction in sarcomeric proteins, Z-disc abnormality, and diminished heart contractility, resulting in the absence of circulation in zebrafish embryos. Gene expression profiling revealed down-regulation of multiple pathways associated with sarcomere assembly and vasculature development in Rbm24 deficiency. CONCLUSION We identified a novel role of the tissue-specific RNA-binding protein (RBP) Rbm24 involving in the regulation of cardiac gene expression, sarcomeric assembly, and cardiac contractility. This study uncovers a potential novel pathway to cardiomyopathy through down-regulation of the RBP Rbm24.
منابع مشابه
Stk38 Modulates Rbm24 Protein Stability to Regulate Sarcomere Assembly in Cardiomyocytes
RNA-binding protein Rbm24 is a key regulator of heart development and required for sarcomere assembly and heart contractility. Yet, its underlying mechanism remains unclear. Here, we link serine/threonine kinase 38 (Stk38) signaling to the regulation of Rbm24 by showing that Rbm24 phosphorylation and its function could be modulated by Stk38. Using co-immunoprecipitation coupled with mass spectr...
متن کاملDepletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands.
The genetic study of titin has been notoriously difficult because of its size and complicated alternative splicing routes. Here, we have used zebrafish as an animal model to investigate the functions of individual titin isoforms. We identified 2 titin orthologs in zebrafish, ttna and ttnb, and annotated the full-length genomic sequences for both genes. We found that ttna, but not ttnb, is requi...
متن کاملRNA-binding protein RBM24 regulates p63 expression via mRNA stability.
UNLABELLED p63, a p53 family member, plays pivotal roles in epidermal development, aging, and tumorigenesis. Thus, understanding how p63 expression is controlled has biological and clinical importance. RBM24 is an RNA-binding protein and shares a high sequence similarity with RBM38, a critical regulator of p63. In this study, we investigated whether RBM24 is capable of regulating p63 expression...
متن کاملThe RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development
RNA-binding proteins (RBP) contribute to gene regulation through post-transcriptional events. Despite the important roles demonstrated for several RBP in regulating skeletal myogenesis in vitro, very few RBP coding genes have been characterized during skeletal myogenesis in vertebrate embryo. In the present study we report that Rbm24, which encodes the RNA-binding motif protein 24, is required ...
متن کاملThe RNA-binding protein Rbm38 is dispensable during pressure overload-induced cardiac remodeling in mice
The importance of tightly controlled alternative pre-mRNA splicing in the heart is emerging. The RNA binding protein Rbm24 has recently been identified as a pivotal cardiac splice factor, which governs sarcomerogenesis in the heart by controlling the expression of alternative protein isoforms. Rbm38, a homolog of Rbm24, has also been implicated in RNA processes such as RNA splicing, RNA stabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 94 3 شماره
صفحات -
تاریخ انتشار 2012